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INTRODUCTION

During the last few years, there has been an
explosion of information in the field of well-test
analysis. Because of increased physical under-
standing of transient fluid flow, it is possible to
analyze the entire pressure history of a well test,
not just long-time data as in conventional analysis.l
It is now often possible to specify the time of
beginning of the correct semilog straight line and
determine whether the correct straight line has been
properly identified. It is also possible to identify
wellbore storage effects, and the nature of wellbore
stimulation as to permeability improvement, or
fracturing, and to quantitatively analyze those
effects. "

Such accomplishments have been augmented by
attempts to understand the short-time pressure data
from well testing — data that were often classified
as too complex for analysis. One recent study of
short-time pressure behavior2 showed that it was
important to specify the physical nature of the
stimulation in considering the behavior of a
stimulated well. That is, stating that the van
Everdingen-Hurst infinitesimal skin effect was
negative was not sufficient to define short-time
well behavior. For instance, acidized (but not
acid-fractured) and hydraulically fractured wells
might not necessarily exhibit the same behavior at
early times, even though they could possess the
same value of negative skin effect.

In the same manner, hydraulic fracturing leading
to horizoatal or vertical fractures could produce the
same skin effect, but with possibly different short-
time pressure data. This could then provide a way
to determine the orientation of fractures created by
this type of well stimulation. In fact, it is generally
agreed that hydraulic fracturing usually results in
one vertical fracture, the plane of which includes
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the wellbore. Most studies of -the flow behavior for
a fractured well consider vertical fractures only3-11

Yet it is also agreed that horizontal fractures
could occur in shallow formations. Furthemmore, it
would appear that notch-fracturing would lead to
horizontal fractures. Surprisingly, no detailed study
of the horizontal fracture case had been performed
until recently.12 A solution to this problem was
presented by Gringarten and Ramey.!3 In the course
of their study, it was found that a large variety of
new transient pressure behavior solutions useful in
well and reservoir analysis could be constructed
from instantaneous Green’s functions.!4 Possi-
bilities included a well with a single vertical
fracture in an infinite reservoir, or at any location
in a rectangle.

Although similar cases had been studied before
by van Everdingen and Meyer,}l and by Russell
and Truite,8 there were confusing differences in
their respective results, and small inconsistencies
between the cases of Ref. 8 made short-time
analysis impossible. Both explicit and implicit
finite-difference  solutions and finite-element
solutions were made for the vertical fracture case
of Russell and Truitt in an attempt to eliminate
differences between Refs. 8 and 11, and internal
differences between cases in Ref. 8. It was
not possible to reach satisfactory conclusioas for
the short-time performance region with even very
long computer runs with either finite-difference or
finite-element 12 programs. For this reason, it was
decided to evaluate analytical solutions to provide
a sound basis for short-time analysis of field data.
In the course of the work, to provide a direct
comparison with the Russell and Truitc data it
became necessary to develop analytical solutions
for fracture cases in which the fluid entry flux
along the fracture caused a constant pressure
along the fracture (infinite fracture conductivity).
It also appeared worthwhile to evaluate the new
solutions so that vertical fracture behavior could
be compared with horizontal fracture behavior in
infinite reservoirs. The new solutions for vertically
fractured wells are especially useful for short-time
or type-curve analysis. Such an analysis can provide
information concerning permeabilities, fracture
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length, and distance to a symmetrical drainage
limit. Combination of short-time analysis with
older conventional semilog analytical methods
permits an extraordinary confidence level concerning
the analysis of field data.

VERTICALLY FRACTURED WELL IN
AN INFINITE RESERVOIR

We model a plane (zero-thickness) vertical fracture
totally penetrating a horizontal, homogeneous, and
isotropic reservoir initially at constant ‘pressure.
At time zero, a single-phase, slightly compressible
fluid flows from the reservoir into the fracture at a
constant total rate. The producing pressure is
uniform over the fracture (infinite fracture
conductivity). The pressure remains constant and
equal to the initial pressure as distance from the
well becomes infinitely large (infinite reservoir).

An analytical expression for the pressure
distribution created by the plane vertical fracture
may be obtained by the Green’s function and
product solution method, 22 ysing source functions
presented by Gringarten and Ramey.14 The condition
of uniform pressure over the fracture at all times
is satisfied, as indicated in Ref. 14, by dividing
the half-fracture length x; into M segments of
length x; /M, each with a uniform flux per unit area,
gm» (m = 1,M). The first segment extends from 0
to x/M the second segment from x /M to 2x,/M,
the mth segment from [(m— l)x/]/M to mx; /M, and
the last segment from (M- 1)/M]xl to x as shown
in Fig. 1. The g, (m = 1,M) are determmed by
equating the pressure drops at the center of the
segments, which provide (M -1) equations, the mth
equation being obtained from the condition of
constant total production rate at all times:

(——J—— xf 0, t) = AP<2‘%:L xf,
0, t) §=1,M-1 .(1)
* M
*£
qum(ﬁ“)h:qf A 3}
m=1

The pressure drop created by the fracture is
obtained from Ref. 14, Table 5:

pi - px,y,t =
1
3 f Z%“’[
(m—l)x
M
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The coordinate system in Fig. 1 and Eq. 3 is
different from that of Ref. 14, however. A similar
scheme has been used by Muskat!5 for the steady-
state pressure distribution created by a partially
penetrating well, and has been suggested by Burns16
for unsteady state. In the unsteady state, however,
the method seems impractical: it was expected —
and confirmed from a numerical simulation2! —
that the flux per unit area of fracture is not constant
but varies in time. A system of M equations and M
unknowns as represented by Eqs. 1 and 2 should
thus be solved at each value of time.

Actually, this is not true practically, and the
pressure distribution can be obtained by solving
the system of equations only once. The flux
distribution in the fracture at various times, as
obtained from a numerical simulation, is shown in
Fig. 2. It can be seen that the flux distribution is
uniform at very early times, then it changes, and
finally it reaches a steady state at some extended
time, after which flow entering the fracture
stab111zes The pressure during the stabilized flow
penod is independent of the flux distribution history,
and is the same as if the flux distribution had been
equal to the final stabilized flux distribution at all
times.

An analog to this interesting and useful fact

y

Possible boundary
conditions

(a) Uniform flux

{b} Infinite conductivity

—)‘(f (o} / \ Xf X

i?xf'ifxf

FIG. 1 — VERTICAL FRACTURE IN AN INFINITE
RESERVOIR.
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occurs in the case of flow to a constant-rate well
with wellbore storage. Wellbore storage causes the
sand-face production rate to change as a function
of time initially. But after some initial period, the
sand-face rate reaches the constant surface rate
(within a specified percentage), and thereafter the
producing pressure is equal to that of a well whose
sand-face rate had been constant from the start of
production. The pressure is independent of the
production history! The same sort of observation
was made in another reservoir problem by Carter
and Tracy.23

By solving the system of Egqs. 1 and 2 for the
stabilized [lux distribution one can obtain a long-
time solution for the pressure, whereas an
early-time solution can be obtained by assuming
uniform flux. We shall show that these also provide
an excellent approximation for the pressure
distribution at all times.

EARLY-TIME SOLUTION

Integrating Eq. 3 with respect to x , the
dimensionless pressure drop can be written as

M
tD y2
p( y t) = ex _._._....P____
p YD’ D P ot-t). <
D m=1
0
2q (t!)hx + I
4n'\tp’ ™s rf"D M

e _—
q.f ‘(t_t')D

St ¥ _m
» T *» "M
—erf —— - erf

zJ(t—c')D 2/ (et )D

m-1 )
Y dtp

2J(&E)D l+[(t—t')D/Tr]1/2
.(4)

+ erf

The dimensionless space and time variables in Eq.
4 are based on the fracture half-length X

xD=.35_ ; yD=_Z_,........(5)
xf Xf

and the dimensionless time and the dimensionless

pressure drop are, respectively,

tD= ktz,............-(G)
duex,
and
2mkh
PD(XD,}’D,tD) - qfu (Pi px,y,t)‘
.o «7)
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At very early times, the expression

m m-1

iy 3+

erf ——mm—— - exf —mm
2;"(t-—t‘)D ZV(t—t')D

becomes constant when tp is small enough.l4 (The
constant is 2 if (m—~1)/M < |[xp| < m/M; unity if |xp|
= (m~=1)/M or |xp| = m/M; and zero if |xp| <
(m~1)/M or |xp| > m/M.) Therefore, at very early
times the system given by Eqs. 1 and 2 reduces to

t

2
fD yD
exp |- —
0 4(t-t )D

1
qu (tD)hxf
e

t 2

dey fD p
1/2 = exp T L
0 4(e-t )D

4lCe-t) /7]

< ! dt!
24541 (Fp) g D
. q . 1/2 b
f 4{(t-t )D/n]
"j=l, M_l e s e e e . ‘. .(8)
M
2q (t_)hx
Z __CL_“;P____f = M, all ty
! m=1 e
.(9)
which yields
q
- _f o .
qj - zhxf 9 J 1)M

As indicated by the numerical model, the flux must
be uniform over the fracture at very early times,
and the early-time solution for the pressure drop
function is

7 T T T T
(34
[
-~  4r
H
[0
M TS
Stabilized
Distribution ty»!
2-
] -
ot [eXe ] 0.001
o 1 i 1 i
Qs 06 Q7 o8 [oX:] 1.0

Dimensionless distance, xp s x/xg

FIG. 2 — FLUX DISTRIBUTION AT VARIOUS TIMES
ALONG AN INFINITE -CONDUCTIVITY VERTICAL
FRACTURE (NUMERICAL MODEL).
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pp (g [<Luypstp) =
t -2 '
J‘D oxp (- yD\\ dtD
1
0 l”"l)/z(tl')/w)l/2
']; 2
2
= (ntD) exp (—YD/‘*tD)

- lypl erfe (lyyl72/e)) .. a0

pD(lxD]>l’yD’tD) =0

and, along the fracture,

D

which is the conventional result for flow in a linear
system. In this case, there is flow into both sides
of the fracture.

p o (Ixp1<1,0,e0) = Vres o oL aD

LONG-TIME SOLUTION

During the stabilized flow period, the gq,'s are
constant and can be taken out of the integral sign
in Eq. 3. Inverting the order of integration in Eq. 3,
one obtains

n
L M 2q hx M
Ppt¥peYpep 4 ag
m=1 m-1
M
-Ei |- 4tD deD
m
- = 2 2
) fM el (x—xw)D+ Yp
/ m-1 m:D
M
. dwa ) . (12)
with
M 2q hxf
z_:_ e M ... (13)
m=1 £

Substituting the series expansion of the exponential
integral function into Eq. 12 yields the long-time
solution for the dimensionless pressure drop
function:
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1
Py (x5 yp5 tp) 5 (In t) + 2.80907)

+ 0 y e e . .(14)*

(x5¥p) (14)
where o(xp, yp) is a pseudo skin function that
depends upon the position of the pressure point
only:

M
1 29,0 xg
o(XD,yD) = 7 jz *—?a;—'
m=1

2
RECIE %) 1n[y§ + (xy - %) ]

~Goy + ) Inlyp + Gy + 0]

b G + D Inly + G + D)

m-1 2 m-1,2
O = ) Inlyp ¥ G = )

2y -
~ 2y arctan D 2 m(m-1)

. 2 m, 2 2 m-1,2
+ émﬁ%:ll Y; ) C .. (s
M
where r, = r/x, is the dimensionless distance to

the axis of the fracture.

Eq. 14 has a form similar to the long-time
approximation of the pressure function for radial
flowl7 (i.e., a circular well without a fracture):

2.1 kt

duecr

27kh (. -
qu Py pr, t

+ 0.80907), r er- ... (16)
As in the radial flow case, a straight line of slope
1.1515 per logarithmic cycle is obtained when the
long-time dimensionless pressure drop is plotted
vs the dimensionless flowing time on semilog
coordinates. Thus, well test analysis methods
developed for transient radial flow problems and
based upon the existence of the 1.1515 slope’
semilog straight line, can be extended to analyze
transient flow into a vertically fractured well in
an infinite system. Actually, it can be shown
that Eq. 14 becomes identical with Eq. 16 if Xy

*:¢2.80907’* is correct.
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tends to zero, of if r becomes very large.

The g¢,'s (m-1,M) in Eq. 15 are obrained by
solving the system of equations represented by
Egs. 1 and 2, which now reduces to

(

2j-1 _ 25t
oG O o O
M 2q hxf
25 _,%___. = M. ...318
\ m=1 £

UNIFORM FLUX VERTICAL FRACTURE

This case corresponds to M = 1 and represents a
first approximation of the behavior of a vertically
fractured well. At early times, however, it is the
exact solution.

The corresponding form of Eq. 4 is

2
ty y2
Pp(xps¥prtp) = P \" 7t}
0
1- 1+ de!
. [erf " + erf XD]—-———D—l—/—??
/’—T 1] t
2/e] 2/?5 4 (e /)
.(19)

Eq. 19 cannot be expressed in terms of tabulated
functions, and must be evaluated with a computer,
except in the plane of the fractre (yp = 0), where
it becomes

1_
2JE;

1 1/2
Pplxp:0sty) = 7 (mtp) [erf

2
1+x (1-x) (1-x.)
+ erf }j)] -———Z}-(—D—— Ei -———A—:—D'—*
2/?5 D
2
1 1+
S xp) ei |- b)) | o
4 4tD

Eq. 20 shows that pressure will vary along the
fracture length (except at early times), which would
not be true if the fracture had infinite conductivity.
However, the pressure drop along the fracture is
low, and the uniform flux condition gives the
appearance of a high, but not infinite, fracture
conductivity. Some field data appear to match this
solution better than the
solution.

infinice-conductivity
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One useful expression for well test analysis is
the pressure drop on the axis of the fracture

(XD = O, tD = O)'

Pp (tp) = D

1 ( l)
- — Ei - ———
2 4tD

pop(tp) has been listed vs tp in Table 1, and
plotted in Figs. 3 and 4 as the (x,/x; = ) curve.

Approximating forms of Eq. 19 at small and large
values of time are the same as obtained in the
previous section. The sigma pseudo skin function
for the long-time approximation, Eq. 15, simplifies
to

c(xD,yD)=

YTt erf( 1 )
2 tD

. (21

£ =

L oym1) 1nlyh + (D)%)

(e +1) 1n[y§ + (xﬁ+1)2]

- 2yD arctan —2-‘—]—_ .
rs-

. (22)
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and in the plane of the fracture,

1 —
UD(XD’O) = - E [(1—XD) lnll XD‘

+ (1) inllac ] - - 29

TABLE | — p,p FOR A VERTICALLY FRACTURED WELL
IN AN INFINITE RESERVOIR

t Uniform Infinite

D flux Conductivity
1.0E-02 0.1772 0.1765
1.5E-02 0.2171 0.2145
2.0E-02 0.2507 0.2456
3.0E-02 0.3070 0.2955
4,.0E-02 0.3545 0.3356
5.0E-02 0.3963 0.3697
6.0E-02 0.4340 0.3996
8.0E-02 0.5007 ° 0.4509
1.0E-01 0.5587 0.4945
1.5E-01 0.6790 0.5833
2.0E-01 0.7756 0.6549
3.0E-01 0.9261 0.7691
4,.0E-01 1.0417 0.8603
5.0E-01 1.1355 0.9367
6.0E-01 1.2145 1.0027
8.0E~-01 1.3427 1.1129
1.0E+00 1.4447 1.2030
1.5E+00 1.6344 1.3754
2. 0E+00 1.7716 1.5032
3.0E+00 1.9676 1.6894
4.0E+00 2.1080 1.8248
5.0E+00 2.2175 1.9312
6.0E+00 2.3073 2.0189
8.0E+00 2.4494 2.1583
1.0E+01 2.5600 . 2.2673
1.5E+01 2.7613 2.4664
2.0E+01 2.9045 2.6085
3.0EH01 3.1065 2.8094
4,0E+01 3.2500 2.9524
5.0E+01 3.3614 3.0634
6.0E+01 3.4524 3.1542
8.0E+01 3.5961 3.2976
1.0E+02 3.7075 3.4089
1.5E+02 3.9101 3.6113
2.0E+02 4.0539 3.7549
3.0E+02 4.2566 3.9575
4,0E+02 4.4004 4.1012
5.0E+02 4,5119 4.2127
6.0E+02 4.6031 4.3039
8.0E4+02 4.7469 4.48477
1.0E+03 4.8584 4.5592
1.5E+03 5.0612 4.7619
2.0EH03 5.2050 4.,9057
3.0E+03 5.4077 5.1084
4.0E+03 5.5516 5.2523
5.0E+H03 5.6631 5.3638
6.0E+03 5.7543 5.4550
8.0E+03 5.8981 5.5988

w
(2]
N

the long-time approximation applies within 1 percent
when

2 1
s 12, 1. . (24)
t) 12.5 (rD + 3)
INFINITE-CONDUCTIVITY VERTICAL
FRACTURE

The system of linear equations given by Eqs. 17
and 18 must be solved for 2qmbx//q/, which
represents the ratio of the flux per unit length in
the mth segment, g,, to the flux per unit length in
the uniform flux fracture case, ¢;/2bx;. The
stabilized value of 2qmbx//q/ along the half-fracture
length is shown in Fig. 5. Although uniform pressure
in the fracture can be obtained with as little as 10
segments, it is necessary to use enough divisions
obtain a stabilized value of aD([xD[<l, 0) =o,p
in the fracture, as indicated by Fig. 6. The change
in o,p is less than 5 x 1075 when the number of
fracture segments is increased from 59 to 60. In
this study, we have used 90 segments to obtain a
stabilized value of o,p in the fracture equal to
-0.305. This value of o,p can be guaranteed to
within 0.1 percent. The precision of determination
of the dimensionless pressure given by Eq. 14
is, of course, much higher. Eq. 14 then yields for
the long-time pressure drop on the fracture,

1
= = ... (25
wa(tD) 3 1n ty + 1.100 (25)

The same result can be obtained in the uniform
flux fracture case by measuring the pressure drop at
xp = 0.732 in the fracture. This can be calculated
by substituting ~0.305 for o(xp, 0) in Eq. 23. It is
obvious in Fig. 7. This suggests that the pressure
drop on the fracture for the infinite-conductivity
fracture can be obtained from that for the uniform
flux fracture, Eq. 20, with xp = 0.732. The result
is

10 T T T T T T T T T
°r i
- 6 .
3
- -
Elo -
o
o
4 - PRI i
infinite conduchivity
- fracture B
2 |- uniform flux frocture/ .
0 " | \ | 1 ! | N
o] 0.2 0.4 06 08 1
. X
Dimensionless Distance, Xp = TR

FIG. 5 — STABILIZED FLUX DISTRIBUTION ALONG
VERTICAL FRACTURE.
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p . (t)) = 1 /it erf 0.134
wD* D 2 D ‘/—
p

+ ore[2:860)\ | - 0.067 Ei

.8
D
%

0.750

B

- 0.433 Ei - - - (26)

Eq. 26 yields the correct value of the wellbore
pressure for a well with an infinite-conductivity

O T l T | T l T I T
$
b -0l —
c
°
k)
[
2 1 -
'
(=
£
e
S -02H —
2
-7}
(7
a
i o .
o
2
o
=
-03 —
1 1 1 ! 1 { 1 ! 1
o] 20 40 60 80 100

number of segments in fracture, m

FIG. 6 —CONVERGENCE OF THE WELLBORE PSEUDO
SKIN FUNCTION o,p (INFINITE-CONDUCTIVITY
FRACTURE).

infinite conductivity fracture

O{xp,0)
o
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T

e -4 -]
2 | frocture oxis
g - E |
2 -5l fracture hp/ ]
£
-
“ ol -
3 iform fux fract
S .o uniform fiux fracture
®
L
a - p
-25 L L | N
[¢] 1 2 3
. . . X
Dimensioniess Distance, X, = ;f—

FIG. 7—PSEUDO SKIN FUNCTION VS DIMENSIONLESS
DISTANCE.

AUGUST, 1974

vertical fracture, at early and long times. It can
be assumed that it also yields the correct pressure
values during the transition period. A similar result
(xp = 0.75) has been obtained by Muskatl5 for a
well with partial penetration at steady state.
p,p(tp) from Eq. 26 has been listed vs ¢p in
Table 1, and graphed in Figs. 8 and 9, where it
corresponds to the (xe/x/ = o0) curve,

VERTICALLY FRACTURED WELL IN A
RECTANGULAR CLOSED RESERVOIR

When a reservoir is in an early stage of depletion,
the production of a particular well is not perturbed
by the existence of other wells or by boundary
effects. After a while this is no longer true, and a
new solution must be developed that considers the
reservoir boundaries or the effect of the other wells.

Fig. 10 presents a schematic of a vertically
fractured well in a rectangular, closed drainage
system. Two types of fracture will be considered
— uniform flux and infinite conductivity — but, as
in the infinite-reservoir case, it is only necessary
to derive the dimensionless pressure drop for the
uniform flux fracture. This is obtained immediately

[ T L T

7 Intinite conductvity
A trocture

8.._.

s |

]

a

— 6 -
£la
ole

« 41 End of linear flow period
" for J&->1

End of tinear flow period

X
for x: =1

Approximate start of semi-log |
straight line (m = 1.i51/10g ~)
1 PR

SN PR §

0
102 10" 1 10 102
kt
‘o pucxg

FIG. 8—p,,p VS tp FOR AN INFINITE-CONDUCTIVITY
VERTICAL FRACTURE.
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FIG. 9—p.p VS tp FOR AN INFINITE-CONDUCTIVITY
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by means of the Green's function and product
solution method (see Ref. 14). The resultis

t o
Xy DA
RI 2 S
pD(x 'y ’tDA) 2“[ 1
e-e 0 n=1
X y
2.2 e , W
eexp |-nTWm — ¢t )cosn‘ﬂ'
( Ye DA Zye
o
y ty . 2.2
. cos nT ——— 1+ 2 exp (— nm
2y
e n=1
i
sin n zxe x
€ v N\ = cos 0T 5
" tDA) Xf 2xe
nm o
e

de! ,....-..(27)

where t, 4 represents the dimensionless time based
on the drainage area:

kt s . (28)
duch (Xe Ye)

tha

The pressure drop on the fracture for a vertical
fracr.ure at th'e center of a square (x, =y, and x, =
¥y is then given by

Puptpa)
tpa - 22 .
ZTTJ 1+ 2 /l exp(-4n"T tDA)
4] n=1
. ¢
® sin nm =
2.2, e
1+ 2 Z exp(-4n"T tDA) -——————Xf
-1 iy
e

X

. COS n'n'xD.){—- dt' .....(29)
e

DA’

The pressure drops on the fracture for a uniform
flux fracture and for an infinite-conductivity fracture
are obtained by evaluating Eq. 29 at xp = 0 and
xp = 0.732, respectively. The choice of the same
point as in the infinite case leads to reasonable
results and can be justified a posteriori by the
method of desuperposition, presented later in this
paper. Numerical values of the dimensionless
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pressure drop from Eq. 29 are listed vs tp, in
Tables 2 and 3, and have been plotted vs tp (not
tpa) in Figs. 3 and 4 and Figs. 8 and 9,
respectively, for various values of the x,/x, ratio.
This ratio is used instead of Russell and Truitt’s®
fracture penetration ratio x//xe because the limiting
case of a vertical fracture in a square reservoir is
a vertical fracture in an infinite reservoir (Figs.
3, 4, 8, and 9), which correspond to x,/x; = oo,
whereas a zero fracture penetration ratio (x//xe= 0)
corresponds to an unfractured well in a square
reservoir, which is a different problem.

Three different flow periods can be characterized
for both types of fractures: a linear flow period
occurs at early times. This corresponds to the
one-half slope straight line in log-log coordinates
(Figs. 4 and 9). After a period of transition, there is
a pseudoradial flow period corresponding to the
semilog straight line (Figs. 3 and 8). After a second
period of transition, pseudosteady state occurs,
which is characterized by an approximate unit
slope straight line in log-log coordinates. Depending
upon xe/x/, one or more of these different flow
periods may be missing; in the total fracture
penetration case (xe/x/ = 1), for instance, the first
transition period and the pseudoradial period do not
appear, whereas only the pseudoradial period is
missing for values of x, /x;between 1 and 3 (uniform
flux fracture), or 1 and 5 (infinite-conductivity
fracture).

DISCUSSION OF VERTICAL
FRACTURE SOLUTIONS

A comparison has been made in Table 4, and in
Figs. 11 and 12 between the subject analytical
solution for the infinite-conductivity fracture and
Russell and Truitt’s results.8 As can be seen from
Figs. 11 and 12, the smaller the x_/x/, the closer
the two solutions become at long times. The over-all
agreement is good, in view of the fact that the
Russell and Truict solution is an explicit finite-
difference solution for a very difficult problem.
The total fracture penetration cases (x,/x = 1)
agree exactly at all times. None of the Russell-Truitt
curves, however, produce the 1.1515 slope semilog

Possible boundary
conditions

oy x ~2_1 {{o) uniform flux
LIPS y M (b} infinite conductivity

= ~
Y, » x
3y "N\
X !
2xe

FIG. 10— VERTICAL FRACTURE IN A RECTANGULAR
RESERVOIR.
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straight line. This result was for many years
erroneously thought by one of the authors of this
study to be an inherent result of a vertical fracture,
rather than an effect caused by the drainage
boundaries. Furthermore, at very early times there
are some discrepancies in the way the
Russell-Truite curves leave the log-log half-unit
slope straight line, which makes them difficult to
use with type-curve matching methods. Finally,
the difference between the current analytical solution
and the Russell-Truitt solution for xe/x/ = 10 is

much larger than that for other values of xe/x/.
This Russell-Truitt case appears to contain an
error and is not recommended for further use.
Russell and Truitt did not provide results for a
vertically fractured well in an infinite reservoir,
but such can be extracted from their results by
desuperposition. The behavior of a fractured well
in a square is identical with that of an infinite
system containing a square array of fraceured wells.
The square array could be constructed by
superposition of single fractured wells in infinite

TABLE 2 — p,,p FOR A UNIFORM FLUX VERTICAL FRACTURE AT THE CENTER OF A SQUARE

t

DA‘/xe/xf 1.00 1.50 2.00 3.00 5.00 7.00 10.00 15.00
1.00E-04 0.0354 0.0532 0.0709 0.1063 0.1772 0.2481 0.3545 0.5306
1.50E-04 0.0434 0.0651 0.0868 0.1302 0.2171 0.3039 0.4340 0.6460
2.00E-04 0.0501 0.0752 0.1003 0.1504 0.2507 0.3509 0.5007 0.7392
3.00E-04 0.0614 0.0921 0.1228 0.1842 0.3070 0.4297 0.6105 0.8855
4.00E-04 0.0709 0.1063 0.1418 0.2127 0.3545 0.4957 0.6999 0.9986
5.00E-04 0.0793 0.1189 0.1585 0.2378 0.3962 0.5533 0.7756 1.0908
6.00E-04 0.0868 0.1302 0.1737 0.2605 0.4340 0.6046 0.8414 1.1686
8.00E-04 0.1003 0.1504 0.2005 0.3008 0.5007 0.6933 0.9515 1.2953
1.00E-03 0.1121 0.1681 0.2242 0.3363 0.5587 0.7686 1.0417 1.3963
1.50E-03 0.1373 0.2059 0.2746 0.4118 0.6790 0.9183 1.2145 . 1.5846
2.00E-03 0.1585 0.2378 0.3171 0.4752 0.7756 1.0334 1.3427 1.7211
3.00E-03 0.1942 0.2912 0.3883 0.5801 0.9261 1.2057 1.5294 1.9164
4,.00E-03 0.2242 0.3363 0.4482 0.6661 1.0417 1.3336 1.6650 200565
5.00E-03 0.2507 0.3760 0.5007 0.7392 1.1355 1.4354 1.7716 2.1658
6.00E-03 0.2746 0.4118 0.5477 0.8030 1.2145 1.5199 1.8594 2,2554
8.00E-03 0.3171 0.4752 0.6297 0.9103 1.3427 1.6554 1.9990 2.3973
1.00E-02 0.3545 0.5306 0.6999 0.9986 1.4447 1.7619 2.1080 2.5078
1.50E-02 0.4342 0.6460 0.8414 1.1686 1.6344 1.9577 2.3073 2.7090
2.00E-02 0.5013 0.7393 0.9515 1.2953 1.7716 2.0981 2.4495 2.8520
3.00E-02 0.6140 0.8861 1.1183 1.4804 1.9676 2.2974 2.6505 3.0541
4.00E-02 0.7092 1.0011 1.2443 1.6159 2.1086 2.4400 2.7940 3.1980
5.00E-02 0.7935 1.0973  1.3470 1.7241 2.2201 2.5524 2.9069 3.3111
6.00E-02 0.8708 1.1819 1.4356 1.8161 2.3140 2.6469 3.0016 3.4061
8.00E-02 1.0127 1.3315 1.5893  1.9734  2.4732 2.8067 3.1618 3.5664
1.00E-01 1.1458  1.4678 1.7273 2.1129 2.6136 2.9473 3.3025 3.7072
1.50E-01 1.4652 1.7895 2.0502  2.4368 2.9381 3.2720 3.6273 4,0320
2.00E-01 1.7801 2.1047 2.3655 2.7523  3.2537 3.5876 3.9429 4 .,4477
3.00E-01 2.4086 2.7332 2.9941  3.3808 3.8823 4.2162 4.5715 4.,9762
4.00E-01 3.0369 3.3615 3.6224 4.0092 4.5106 4.8445 5.1998 5.6045
5.00E-01 3.6652 3.9898  4.2507 4.6375 5.1389 5.4728 5.8281 6.2328
6.00E-01 4.2935 4.6181 4.8790 5.2658 5.7672 6.1011 6.4564 6.8512
8.00E-01 5.5501 5.8748 6.1357 6.5224 7.0239 7.3578 7.7131 8.1178
1.00E+00 6.8068 7.1314 7.3923 7.7791  8.2805 8.6144 8.9697 9.3744
1.50E+00 9.9484 10.2730 10.5339 10.9207 11.4221 11.7560 12,1113 12.5160
2.00E+00 13.0900 13.4146 13.6755 14.0623 14.5637 14.8976 15.2529 15.6576
3.00E+00 19.3732 19.6978 19.9587 20.3455 20.8469 21.1808 21.5361 21.9408
4,.00E+00 25.6563 25.9810 26.2418 26.6286 27.1301 27.4639 27.8193 28,2240
5.00E+00 31.9395 32.3641 32.5250 32.9118 33.4132 33.7471 34,1024 34.5072
6.00EH00 38.2227 38.5473 38.8082 39.1950 39.6964 40.0303 40.3856  40.7904
8.00E+00 50.7891 51.1137 51.3746 51.7614 52.2628 52.5967 52.9520 53.3567
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mediums in the same way a well in a closed square
was constructed by Marthews et al.1® and by
Earlougher et al.l9 We realize that the pressure
drop at a great distance from a fractured well
produced at constant rate is essentially identical
with the pressure drop caused by an unfractured
well. Thus, the behavior of a fractured well in a
closed square may be approximated by generating
the drainage boundaries with unfractured wells, if
xe /x4 is large enough. This simple approach can
also be used to extract the behavior of a fractured

well in an infinite medium from that of a fractured
well in a closed square. This can be stated as
follows: the pp for a fractured well in an infinite
medium is equal to the pp for a fractured well in a
closed square, less the pp for an unfractured well
in a closed square, plus the pp for an unfractured
well in an infinite medium. The method has been
applied to both the current analytical solutions and
Russell-Truitt solutions for an infinite-conductivity
fracture in a closed square reservoir (Table 4 and
Fig. 13). The data for an unfractured well in a

TABLE 3 — p,,p FOR AN INFINITE-CONDUCTIVITY VERTICAL FRACTURE AT THE CENTER OF A SQUARE

tD?/' 1.00 1.50 2.00 3.00 5.00 7.00 10.00 15.00
X /xf

1.00E-04 0.0354 0.0532 0.0709 0.1063 0.1765 0.2433 0.3356 0.4735
1.50E-04 0.0434 0.0651 0.0868 0.1302 0.2145 0.2928 0.3996 0.5590
2.00E-04 0.0501 0.0752 0.1003 0.1502 0.2456 0.3327 0.4509 0.6278
3.00E-04 0.0614 0.0921 0.1228 0.1832 0.2955 0.3962 0.5328 0.7379
4.00E-04 0.0709 0.1063 0.1417 0.2104 0.3356 0.4471 0.5987 0.8259
5.00E-04 0.0793 0.1139 0.1582 0.2338 0.3697 0.4904 0.6549 0.9000
6.00E-04 0.0868 0.1302 0.1730 0.2545 0.3996 0.5284 0.7042 0.9642
8.00E-04 0.1003 0.1502 0.1989 0.2901 0.4509 0.5939 0.7889 1.0718
1.00E-03 0.1121 0.1676 0.2212 0.3204 0.4945 0.6496 0.8603 1.1600
1.50E-03 0.1373 0.2040 0.2671 0.3821 0.5833 0.7631 1.0027 1.3296
2.00E-03 0.1585 0.2338 0.3041 0.4315 0.6549 0.8536 1.1129 1.4560
3.00E-03 0.1942 0.2818 0.3633 0.5104 0.7691 0.9953 1.2792 1.6405
4,.00E-03 0.2242 0.3204 0.4107 0.5738 0.8603 1.1050 1.4037 1.7750
5.00E-03 0.2507 0.3533 0.4509 0.6278 0.9367 1.1947 1.5033 1.8808
6.00E-03 0.2746 0.3821 0.4863 0.6753 1.0027 1.2707 1.5862 1.9681
8.00E-03 0.3171 0.4315 0.5470 0.7569 1.1129 1.3948 1.7196 2.1071
1.00E-02 0.3545 0.4735 0.5987 0.8259 1.2030 1.4941 1.8248 2.2158
1.50E-02 0.4342 0.5595 0.7043 0.9642 1.3754 1.6800 2.0189 2.4146
2.00E-02 0.5013 0.6295 0.7891 1.0718 1.5033 1.8152 2.1583 2.5564
3.00E-02 0.6140 0.7445 0.9239 1.2352 1.6896 2.0092 2.3567 2.7572
4.00E-02 0.7092 0.8406 1.0316 1.3592 1.8256 2.1492 2.4989 2.9006
5.00E-02 0.7935 0.9254 1.1235 1.4607 1.9342 2.2600 2.6110 3.0133
6.00E-02 0.8708 1.0030 1.2054 1.5486 2.0264 2.3536 2.7053 3.1081
8.00E-02 1.0127 1.1452 1.3521 1.7015 2.1838 2.5124 2.8649 3.2682
1.00E-01 1.1458 1.2784 1.4872 1.8392 2.3234 2.6527 3.0055 3.4089
1.50E-01 1.4652 1.5979 1.8081 2.1619 2.6474 2.9771 3.3301 3.7337
2.00E-01 1.7801 1.9128 2.1231 2.4772 2.9629 3.2926 3.6457 4,0493
3.00E-01 2.4086 2.5413 2.7516 3.1057 3.5915 3.9212 4.2743 4.6778
4.00E-01 3.0369 3.1696 3.3799 3.7341 4,2198 4.5495 4.9026 5.3061
5.00E-01 3.6652 3.7979 4.0082 4.3624 4.8481 5.1778 5.5309 5.9345
6.00E-01 4.2935 4.4262 4.6366 4.9907 5.4764 5.8061 6.1592 6.5628
8.00E-01 5.5501 5.6829 5.8932 6.2473 6.7331 7.0628 7.4159 7.8194
1.00E+00 6.8068 6.9395 7.1498 7.5040 7.9897 8.3194 8.6725 9.0761
1.50E+00 9.9484 10.0811 10.2914 10.6456 11.1313 11.4610 11.8141 12.2177
2.00E+00 13.0900 13.2227 13.4330 13.7872 14.2729 14.6026 14.9557 15.3592
3. 00E+00 19.3732 19.5059 19.7162 20.0703 20.5561 20.8858 21.2389 21.6424
4.00E+00 25.6563 25.7891 25.9994 26.3535 26.8393 27.1690 27.5220 27.9256
5.00E+00 31.9395 32.0722 32.2826 32.6367 33.1224 33.4521 33.8052 34,2088
6.00E+00 38,2227 38.3554 38.5658 38.9199 39.4056 39.7353 40.0884 40.4920
8.00E+00 50.7891 50.9218 51.1321 51.4863 51.9720 52.3017 52.6548 53.0584
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closed square were taken from Table 1, Ref. 19.
It was found that desuperposition of the analytical
solution for a closed square yields a very good
approximation of the analytical solution for an
infinite reservoir, for x,/x; values of 2, 5, and
10/3. This justifies a posteriori the choice of xp =
0.732 for representing the wellbore pressure for an
infinite-conductivity fracture in the finite-reservoir
case. xe/x/ ratios of 10/7 and 1 gives pp values
that are much too large, implying that desuperposi-
tion cannot be used because the fracture is too
close to the square boundary. The "e/"f = 10 case
yields pp values by desuperposition that are far
too small. It is likely that the Russell and Truirt
results have a small, almost constant error for this

case. It should be noted, however, that the Russell
and Truitt desuperposed solution for an infinite
reservoir does have a slope of 1.151 when plotted
on semilog coordinates, although their solutions
for the closed square did not.

An interesting interpretation of the behavior of a
vertically fractured well can be made in terms of an
equivalent unfractured system. PratsS has shown
that an infinite-conductivity vertical fracture,
producing an incompressible fluid from a closed
circular reservoir at steady state, is equivalent to
an unfractured well with an effective radius equal
to a quarter of the total fracture length, for ratios
of the reservoir radius to the fracture half length
greater than 2. The same is true, within 7 percent,

TABLE 4 — COMPARISON BETWEEN ANALYTICAL AND FINITE-DIFFERENCE WELL BORE PRESSURES FOR AN INFINITE-
CONDUCTIVITY VERTICAL FRACTURE AT THE CENTER OF A CLOSED SQUARE

1 10/7 2
D& xe/xf=l Analytical  Finite Dif. Analytical  Finite Dif. Analytical Finite Dif.

1.0 E-04 0.0354 0.0355 0.0506 0.0506 0.0709 0.0709
2.0 E-04 0.0501 0.0501 0.0716 0.0716 0.1003 0.1003
5.0 E-04 0.0793 0.0793 0.1132 0.1107 0.1582 0.1527
8.0 E-04 0.1003 0.1431 0.1989

1.0 E-03 0.1121 0.1121 0.1598 0.1528 0.2212 0.2092
2.0 E-03 0.1585 0.1585 0.2233 0.2111 0.3041 0.2870
5.0 E~03 0.2507 0.2507 0.3386 0.3220 0.4509 0.4326
8.0 E-03 0.3171 0.3171 0.4142 0.3982 0.5470 0.5306
1.0 E-02 0.3545 0.3545 0.4548 0.4398 0.5987 0.5836
2.0 E-02 0.5013 0.5014 0.6062 0.5969 0.7891 0.7755
5.0 E-02 0.7935 0.7936 0.8973 0.8947 1.1235 1.1051
8.0 E-02 1.0127 1.0127 1.1160 1.1145 1.3521 1.3309
1.0 E-01 1.1458 1.1457 1.2489 1.2477 1.4872 1.4654
2.0 E~-01 1.7801 1.7797 1.8832 1.8818 2.1231 2.1003
5.0 E-01 3.6652 3.6648 3.7683 3.7668 4.0082 3.9853
8.0 E-01 5.5501 5.5498 5.6532 5.6517 5.8932 5.8702
1.0 E+00 6.8068 6.8064 6.9099 6.9034 7.1498 7.1269
2.0 E+00 13.0900 13.0696 13.1930 13.1916 13.4330 13.4101
5.0 E+00 31.9395 32.0426 32.2826

8.0 E+00 50.7891 50.8922 51.1321

tha 10/3 5 10

xe/xf=1 Analytical Finite Dif. Analytical Finite Dif. Analytical Finite Dif.

1.0 E-04 0.1181 0.1182 0.1765 0.1772 0.3356 0.3545
2.0 E-04 0.1666 0.1671 0.2456 0.2476 0.4509 0.4715
5.0 E-04 0.2578 0.2463 0.3697 0.3575 0.6549 0.6395
8.0 E-04 0.3187 0.4509 0.7889

1.0 E-03 0.3514 0.3318 0.4945 0.4780 0.8603 0.8013
2.0 E-03 0.4711 0.4480 0.6549 0.6390 1.1129 1.0171
5.0 E-03 0.6830 0.6586 0.9367 0.9164 1.5033 1.3697
8.0 E~03 0.8220 0.7951 1.1129 1.0872 1.7196 1.5732
1.0 E-02 0.8958 0.8668 1.2030 1.1742 1.8248 1.6735
2.0 E-02 1.1550 1.1167 1.5033 1.4659 2.1583 1.9970
5.0 E-02 1.5552 1.5045 1.9342 1.8894 2.6110 2.4430
8.0 E-02 1.7984 1.7442 2.1838 2.1372 2.8649 2.6958
1.0 E-01 1.9366 1.8817 2.3234 2.2766 3.0055 2.8361
2.0 E-01 2.5751 2,5189 2.9629 2.9154 3.6457 3.4757
5.0 E-01 4.4602 4.4039 4.8481 4.8004 5.5309 5.3607
8.0 E-01 6.3452 6.2889 6.7331 6.6853 7.4159 7.2456
1.0 E+00 7.6018 7.5455 7.9897 7.9419 8.6725 8.5023
2.0 E+00 13.8850 13.8287 14,2729 16.2252 14.9557 14,7855
5.0 E+00 32.7345 33.1224 33.8052

8.0 E+00 51.5841 51.9720 52.6548
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for a compressible fluid at steady or pscudosteady
state.® We can see that these results apply to a
vertically fractured well in an infinite reservoir
during the pseudoradial period, because Eq. 25 can
be written as

kt
e (£)7

+ 0.80907 |- - . . . . .. (30)

In

N b=

Pplty) =

The effective well radius for an infinite-conductivity
vertical fracture in an infinite reservoir is thus
exactly one-fourth the total fracture length. The
effective radius for an infinite-conductivity vertical
fracture in a closed square reservoir at pseudosteady
state may be obtained from the general pseudosteady-
state depletion equation presented by Brons and
Miller,20 which, in the present case, can be
expressed as

4(x_/r') x
£ w e, . (3D

oy

where C4 is the shape factor for a well in a square,
and r/, is the effective well radius. Effective radii
computed from the current analytical solution and
from the Russell and Truitt solution are compared
in Fig. 14 with the results of Prats et alb for
various values of x;/x, (x//xe is used for conve-
nience in this case). Surprisingly, variations of the
radii as a function of x;/x, are different in the
Prats et al. results. Agaln, the result for x//xe =
0.1 in Russell-Truitt’s case is inconsistent with
other results.

Comparison was also made between the subject
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FIG. 11 — COMPARISON OF ANALYTICAL SOLUTION

AND RUSSELL AND TRUITT SOLUTION FOR AN

INFINITE-CONDUCTIVITY VERTICAL FRACTURE IN
A SQUARE.
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solution and the analytical results of van Everdingen
and Meyer!! for an infinite-conductivity fracture in
an infinite reservoir. Although not shown, results
do not compare well. The van Everdingen and Meyer
solution is correct during the initial linear flow
period. But it yields a semilog straight line of
slope 0.576 per logyq cycle, instead of 1.151 per
logyo cycle as in the subject study, or as in the
Russell and Truitt® desuperposed solution. It is
not recommended that this solution be used in the
pseudoradial flow period. Either the current
analytical solution, or the desuperposed Russell-
Truitt solution for a fractured well in an infinite
medium may be used.

NOMENCLATURE

C4 = pseudosteady-state shape factor for a well
at the center of a squarel9 = 30.86
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FIG. 12 — COMPARISON OF ANALYTICAL SOLUTION

AND RUSSELL AND TRUITT SOLUTION FOR AN

INFINITE-CONDUCTIVITY VERTICAL FRACTURE IN
A CLOSED SQUARE.
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FIG. 13 — DESUPERPOSITION OF RUSSELL AND

TRUITT RESULTS TO OBTAIN A VERTICALLY

FRACTURED WELL IN AN INFINITE RESERVOIR AND

COMPARISON WITH THE SUBJECT ANALYTICAL

SOLUTION FOR AN INFINITE-CONDUCTIVITY VERTI-
CAL FRACTURE IN AN INFINITE RESERVOIR,
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b = fomation thickness

a
It

formation permeability

M = number of vertical fracture elements for
generating an infinite-conductivity
fracture

p = pressure
p; = initial reservoir pressure
pp = dimensionless pressure
= total withdrawal rate from fracture

4,, = flux per unit area in vertical fracture
elements

r = distance to fracture axis

rp = dimensionless distance to fracture axis,
based on fracture half length

r. = effective well radius
t = flowing time

tp = dimensionless time based on the fracture

half length
tp = dummy variable of integration
tps = dimensionless time based on drainage
area
x,y = space coordinates

xpyp = dimensionless coordinates based on the
fracture half length

X, Y = tectangular reservoir half dimensions
xp = fracture half length
X, ¥, = fracture axis coordinates
y = Euler’s constant = 0.5772
n = diffusivity constant
p = fluid viscosity

S
b
-
.

Uniform flux fracture

Infinite conductivity
fracture

24 Russell and Truitt® _

Reciprocal dimensionless effective well radius, xf/rw’

% Prats et al®
1 L L 1 | L 1 ! | 1
0 0.2 0.4 0.6 0.8 1
X¢
Xg

FIG. 14— COMPARISON OF RECIPROCAL DIMENSION-
LESS EFFECTIVE WELL RADIUS, x/r,-
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o = pseudo skin function, defined by Eq. 14
7 = dummy variable of integration

¢ = formation porosity

SPECIAL FUNCTIONS

Inverse tangent function:
-1
arctan(x) = tan = (x)

Exponential integral:

X -u
-Ei(-x) = S SU—du
0

Error function:

2 X —u2
erf(x) == f e du
/1 0

Complementary error function:
erfe(x) =1 - exrf(x)
Units: CGS units are used throughout this study.
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